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A third-order linear controlled system which simulates the motion of an inertial object acted upon by a control force with a bounded 
rate of change is considered. The time-optimal open-loop control of the system is constructed. The feedback optimal control is 
given in dosed form. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We consider a system with a single degree of freedom, described by the equations 

x l = x 2 ,  n f f 2 = F  (1.1) 

where x 1 is a generalized coordinate, x2 is a generalized velocity, m is a constant inertial characteristic 
(the mass or moment of inertia), F is the control (the force or the moment of the force) and dots denote 
derivatives with respect to the time t. 

When formulating optimal control problems, it is usually assumed that the absolute magnitude of 
the force F is bounded by a constant F0, that is, I F I ~< F0. In the case of a time-optimal control problem 
it is well known [1] that this constraint leads to the bang-bang form of optimal control. In this case, the 
force F(t) takes limiting values -F0  and instantaneously switches from one of these values to the other. 
Such a control is not always practicable, for example, when an electric drive is used to realize the control. 

In this paper, we assume that there is a more realistic constraint on the rate of change of the control 
force of the form 

1/71~<Vo (1.2) 

where a) 0 > 0 is a specified constant. We shall also assume that the bound on the absolute magnitude 
of the force is not alltained and I F(t) I < Fo always. 

Making the change of variables 

xl =(Vo/m)x ,  x2=(uo /m)y ,  F=voZ 

we reduce (1.1) and constraint (1.2) to the form 

=y ,  ) ,=z,  ~=u,  l u l ~  1 (1.3) 

Here, the variables x, y and z are phase coordinates and u plays the role of a bounded control. 
The initial conditions for system (1.3) are specified in the form 

x(0)= x 0, y(0) =Y0, z(0)= z0 (1.4) 

where the initial instant of time is assumed to be equal to zero without any loss in generality. 
We now formulate the problem of constructing a control u(t) which satisfies the constraint I u(t) I <~ 1 

when t I> 0 and which transfers system (1.3) from an arbitrary initial state (1.4) to a specified terminal 
manifold 

x(T) = O, y(T) = 0 

for arbitrary z(T) after the shortest time T. 

(1.5) 
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In addition to determining the open-loop control, the problem of the feedback time-optimal control 
for system (1.3) will also be solved. This control u(x ,y ,  z) ,  which is expressed as a function of the current 
(or initial) phase coordinatesx, y, z, ensures that system (1.3) is brought to the specified terminal manifold 
(1.5) after the shortest time. 

2. THE M A X I M U M  P R I N C I P L E  

We now apply the maximum principle [1] to the time-optimal control problem (1.3)-(1.5). We set 
up the Hamiltonian function 

H = PxY + pyz + pzu (2.1) 

and write down the conjugate equations 

px = o, py p, =-py  (2.2) 

Here px, py, pz are the conjugate variables. System (2.2) is integrated subject to the transversality condition 
p~(T) = 0 which corresponds to the condition that z(T) is not fixed, and we obtain 

Px = cx, Py = cy + cx'c, Pz = cy'c + cxx 2 / 2 (2.3) 

Here, x = T - t is the time measured from the end of the process (the "inverse" time) and cx and cy 
are arbitrary constants. The condition for the Hamiltonian (2.1) to be a maximum with respect to u 
subject to the constraint I u I ~< 1 from (1.3) gives u(t)  = signpz(t) .  It follows from formula (2.3) forpz 
that the f unc t ionpz ( t )  changes sign not more than once when t ~< T, x >1 0. Consequently, the optimal 
control u(t)  = __. 1 has not more than one switching when t ~< T. 

3. O P E N - L O O P  C O N T R O L  

We denote the lengths of the two possible segments of constancy of the control u(t)  by 01 and 02 and 
the value ofu(t)  in the first of these segments by ~ = __. 1. The optimal control can then be represented 
in the form 

u(O = a when t ~ (0, 01) 

u(t) = - a when t ~ (01, T), 01 + 02 = T (3.1) 

We now substitute control (3.1) into system (1.3) and integrate it subject to the initial conditions (1.4). 
We obtain 

x(  t ) = x o + yo t + zot 2 / 2 + t~t 3 16 

Y ( t ) =  yo + zot +crt 2 / 2 ,  z ( t ) =  zo + o t  when t e ( 0 , 0 , )  

x ( t )  = x 0 + Y001 + z002 / 2 + ff0~ / 6 + (Y0 + z001 + 002 / 2)(t - 01 ) + 

+(z0 + oO! ) ( t -  0 ! )2 / 2 - a( t  - 01 )3 / 6 

y( t )  = Yo + z0Ol + oO! 2 / 2 + (Zo + o0 ! )(t - 01 ) -  a( t  - 0 t )2 / 2 

z ( t )  = Zo + oOl - ~ ( t  - O I ) when t ~ (0 l, T) 

(3.2) 

Substituting solution (3.2) into condition (1.5), we obtain two relations and, on solving these for x0 
and Y0, we obtain 

x0 = Zo r2 / 2 + ct(e  + 30202 - e ,  3) / 3 

Y0 = -Z0 T -  ct(O2 + 201O 2 - 02) / 2 (3.3) 



Time-optimal control in a third-order system 701 

The following notation is introduced 

~=Zo3X0 ,  =z tlz0[- y0, g - - s i g n ~  

= I oI-' r, = e=y -l o) 

X(~,)=(i_3~2 +~3) /3 ,  y(~.)=~,2 _~ 

(3.4) 

Relations (3.3) then takes the form 

~(~s -3 - s -t / 2) -- t~X(Z), ~(~s -2 + s -I ) -- oY(Z,) (3.5) 

When z0 = 0, relations (3.3) give 

Xo T-3 = o X ( k ) ,  yo T-2 = <~Y(Z) (3.6) 

When the parameter ~, changes from 0 to 1, a point with coordinates X(~,), Y(~,) traverses the arc of 
the curve which joins pointsA1 andA2 with coordinates (1/3, -1/2), (-1/3, 1/2). When ~, e [0, 1] and 
o = --- 1, points with coordinates <IX(L), oY(L) form a closed curve F which is symmetric about the origin 
of coordinates and has corner points A1 and A2 (see Fig. 1). The curve F bounds a convex domain 
containing the origin of the system of coordinates. 

The solution of the time-optimal open-loop control problem (1.3)-(1.5) can then be represented as 
follows. 

We initially assume that z0 ~ 0 and determine ~, q, ~ in accordance with (3.4) from (1.5) using the 
specified initial data x0, Y0, z0. The left-hand sides of relations (3.5) specify the coordinates of a certain 
point P which depends on the parameter s • [0, ~). As s changes from ~ to 0, P moves along a smooth 
semi-infinite curve from the origin of the system of coordinates (when s ---> ~)  to infinity (when s ---> 0). 
This point falls at least once on the closed curve F which encircles the origin of the system of coordinates. 
The least value of s = s. for which P • F is found numerically. According to (3.4), the optimal time is 
equal to T = I z0 Is.. The position of the point P on the curve F, when s = s., determines the values of 
the parameters o = - 1 and ~, • [0, 1]. By virtue of (3.4), the lengths of the segments of constancy of 
the control are equal to 01 = (1 - ~,)T and 02 = LT. 

When z0 = 0, we consider equalities (3.6) instead of (3.5). The left-hand sides of these equalities 
specify the coordinates of the point P which depends on the parameter T. When T changes from 
to 0, the point P moves along a semicubic parabola from the origin of the system of coordinates (when 
T ---> ~)  to infinity (when T ---> 0). The least value of the parameter T for which P • F is the optimal 
time. The values of the parameters 6, ~, 01, 02 are determined from the position of the point P on F, 
as in the case when z0 * 0. 

When the quantities o, 01, 02 have been determined, the optimal control u(t) and the corresponding 
optimal trajectory are specified by equalities (3.1) and (3.2). The proposed algorithm completely 

~Y 
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Fig. 1. 
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determines the solution of the time-optimal open-loop control problem. According to the construc- 
tion, this solution is unique. 

As an example, we present the results of the determination of the optimal control for the initial data 

x0 =-72+27~t3"-25.2, Y0 =3, z0 =1 

In this case, one obtains 

T=s=6, o=1, 0t=6-3- f3~0.80 ,  02=3~r3~5.20 

The corresponding trajectory of the point P when T changes from ~ to 0 is shown in Fig. 1. 

4. F E E D B A C K  O P T I M A L  C O N T R O L  

In order to construct a feedback optimal control it suffices to find the switching surfaces in the phase 
space xyz on which the sign of the control u = --. 1 changes. On these surfaces, the length of one of  the 
segments of constancy vanishes, that is, 01 = 0 or 02 = 0. From (3.4), we have here ~, = 0 or 7~ = 1. 
According to (3.5), values of X and Y equal to __. 1/3 and ¥- 1/2 correspond to these values of ~, respectively. 
From (3.5), we obtain the conditions 

~(~S-3 - -  $ - 1  / 2) = +6  / 3, ~(TIs -2 + S - t)  = :1=6 / 2 (4.1) 

which are satisfied in the ~rl plane on the switching curves when z0 ~ 0. However, relations (4.1) are 
insufficient for determining the switching curves: for this, we require a direct analysis of relations (3.5) 
which will be carried out below. 

Note that, in the feedback control, the initial conditions x0, Y0, z0 can be treated as the current 
values of the phase coordinates x, y, z. We consider relations (3.4) as formulae for the change of 
variables 

~=z-ax, ~=Z-llzl-ly, ~=signz (4.2) 

in phase space. This change of variables, which introduces the self-similar variables ~ and 1], enables 
one, when z ~ 0, to reduce the dimensions of the phase space by one and to construct the feedback 
optimal control in the ~rl plane. 

We will first consider the case when z = 0 separately. By analogy with (4.1), we obtain the 
conditions 

xT -3 =+a13, yT -2 =T-al2 (4.3) 

from (3.6). These conditions are satisfied at the intersection of the switching surfaces with the z = 0 
plane. When z = 0, conditions (4.3) define two halves of the semicubic parabolae which form the 
switching curve (SC) in the z = 0 plane, described by the equation 

),(x, y) - 3x + 2yl yl ~ = 0 (4.4) 

An analysis of the signs of 6 on the branches of the SC (4.4) enables one to determine the signs of the 
controls on the different sides of the switching curve. As a result, we obtain the feedback optimal control 
when z = 0 in the form 

u(x, y, 0) = - sign ~/(x, y) when ¥ ~ 0 

u(x,y,O) = signx = - s igny  when ¥ = 0 
(4.5) 

When z ~ 0, the change of variables (4.2) transforms the first two equations of (1.3) to the form 

=lzl -l (rl - 3u~) ,  T1 =Izl -l (I - 2u~rl) (4.6) 

On dividing the first equation of (4.6) by the second, we obtain the linear equation in 
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d ~ =  q - 3 o ~  
ct = u~ = +1 (4.7) 1-2(zrl' 

T h e  p a r a m e t e r  ct re tains  a cons tant  value along the op t imal  t rajectories  which do  not  in tersect  the 
z = 0 plane.  On  integrat ing Eq. (4.7) in the case of  constant  ct, we find its genera l  solut ion 

~ = ~ ( ~ ,  o~, A) - t x ,  x l - ~ + A l l - 2 c t r l  I~ (4.8) 

where  A is an arbi t rary  constant .  No te  that  the second equa t ion  of  (4.6) enables  one  to de t e rmine  
the direct ion of  mot:ion a long the op t imal  trajectories.  I f  ct = 1, the mot ion  occurs  in the direct ion of  
an increase in rl when  1"1 < 1/2 and in the direct ion of  a decrease  in 11 when  rl > 1/2. If, however ,  
(z = -1 ,  the mo t ion  occurs in the direct ion of  a decrease  in I1 when  11 < -1 /2  and an increase  in rl when  
r I > - 1 / 2 .  

We will now cons t ruc t  the f eedback  op t imal  control .  As was shown above,  in o rder  to do this it is 
sufficient to establish the sign of  the contro l  u = (~ at the initial instant  o f  t ime t = 0 as a funct ion of  
the initial datax0,Y0, z0. On  changing to self-similar variables and returning to relations (3.5), the feedback 
p rob l em can be fo rmula t ed  as follows: it is required  to find the value of  (~ = __.1 which co r responds  
to the solution of  re la t ions (3.5) (for  fixed ~, rl, ~, where  ~ = __.1) with the least  s, where  s > 0 and 
~ [0,11. 

We will now briefly descr ibe the solution algori thm, and subsequent ly  explain its mos t  impor t an t  
features.  

First, we no te  tha t  re la t ions (3.5) re tain their  fo rm when  ~ and (~ change  signs s imultaneously.  
Consequently,  when l~ is replaced b y - ~ ,  the required quantity (~ also changes sign. It is therefore  sufficient 
to construct  the solut ion in the case when  ~ = 1 for  arbi t rary ~ and T 1 and, in the case when  ~ = -1 ,  
simply to change  the sign in the result ing dependence  (~(~, rl). 

Wi thout  loss of  general i ty,  we the re fore  put  ~ = 1 and e l iminate  ~. using the second of  Eqs  (2.5). We 
obtain 

X = [ ~  + a ( ~ s  -2 + s -t ) ]~ ,  (~ -- +1 (4.9) 

Since ~ e [0, 1], then, for  fixed a = - 1 and 11, the ranges  of  var ia t ion of  s in which 7L is real  and  
~, ~< 1 are d e t e r m i n e d  f rom (4.9). We substi tute Z, f rom (4.9) into the first equa t ion  of  (3.5) and find 
the d e p e n d e n c e  of  ~ on s, rl and (~ = ___1. For  fixed 11, we shall deno te  these dependences  by ~+(s) and 
~-(s) for  (~ = _1 .  Subject  to the condi t ion iL e [0, 1], they define two curves in the s, ~ plane,  each  of  
which consists, general ly  speaking,  of  a finite n u m b e r  of  arcs. We investigate these curves and  find their  
domains  of  definit ion and the ex t rema  in the whole  range of  var ia t ion in the a rgumen t  s and the 
p a r a m e t e r  11 af ter  which we analyse their  a r r a n g e m e n t  with respect  to one  another .  A line ~ = const  
is then menta l ly  dra,~m in the s ~ p lane  and the m i n i m u m  value of  the abscissa s > 0 is found  for  which 
this line intersects one  of  the above -men t ioned  curves. The  value of  (~ = __. 1 which co r re sponds  to that  
curve with which this intersect ion takes place de te rmines  the requi red  control  u = (~ for  the da ta  ~, 11 
and ~ = 1 and the value of  s which cor responds  to this point  of  intersect ion is equal  to the normal ized  
op t imal  time: s = TI z 1-1 (of  a normal ized  Bel lman function).  

We will now describe these operations in greater detail, taking account of the fact that all of the following 
constructions are only true when s > 0. From (3.5), we have 

g±(s) = :l:s 3 1 6 - s  2 / 2 - s r l + ( s  2 12+rl+s) ~ 13 (4.10) 

I f s  --* +oo, then g±(s) ,= _ ( -1  + 1H2)s3/6 --4 -7-00. 
We now consider the function {+(s). In the case when ~ = 1, the condition 7L ~< 1 selects the set s • (0, Sz] td 

[sl, +oo), where Sl 2 = 1 -+ x/(1 + 2rl). The expression for t - ( s )  is determined ifs • [s5, +oo), where s5 = -1 + :x/(1 
- 2rl). The derivative d{+/ds vanishes at the point s 5 and s 7 = -1+~/(2(1 - 211) ) if s 5 and s7 exist and s 5 ~< s 7. 
Furthermore, dZ~+/ds 2 < 0 when s = s7, that is, s7 is a maximum point. It can be shown that, if sl, s2, s5 and s7 exist, 
then s2 <~ S7 ~< S1, a n d  s 2 ~> s 5. 

If 'q ~ 0 then s2 ~ 0 and d~ /ds 0 when s ~ sl, that is, the function g (s) is defined when s • [Sl, +oo) and 
decreases from g+(sl) to --o0. I f - l / 2  ~ rl < 0, then ss > 0, that is, the function g+(s) is defined when s • [ss, s2] t.J 
[Sl, +oo). It has a null derivative when s = s5, increases in the interval [ss, s2] and decreases from ~+(s0 to --oo when 
s • [Sl, +00). If T1 < --1/2, then ss > 0 and the value of s2 is undefined. Then, the function g+(s) is defined when s 
• [ss, +0o), dg+/ds = 0 when s = ss and g+(s) increases up to a maximum at the point s = s7 after which it decreases 
from g+(s7) to-o . .  
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We now consider the function t-(s). We require that ~. ~ 1 in (4.9) and obtain that s ~ [Ss, +oo) where ss = -1 
+ "4(1 - 2q). I fs  e (0, s2] tO [Sl, +oo), then the function g-(s) from (4.10) is defined. Its derivative vanishes at the 
points Sl, s2 and s3 = 1 - "4(2(1 + 21"1)) if they exist and ss t> sl. In addition, d2t-ds 2 > 0 when sl = ss, that is, 
s = s3 is the point of a minimum. 

If 'q/> 0 then s2 <~ 0 and the function g-(s) is defined when s ~ [sl, +oo) and dg-/ds = 0 when s = Sl. The function 
g-(s) decreases from t-(s1) up to the point of the minimum s = s3 after which it increases from g-(s3) up to +oo. 
If -1/2 ~< 1"1 < 0 then s5 > 0, that is, the dependence g-(s) is defined when s e [s5, s2] tO Is1, +oo). The function 
~-(s) increases as s varies from s = s 5 to s = Sz, where d~-/ds = 0 when s = s2 and increases when s ~ Is1, s3] where 
dt- /ds  = 0 when s = Sl and s = ss. Then, g-(s) increases from g-(s3) to +oo. Ifrl < -1/2, then ss > 0, the values of 
Sl, s2 and s3 are not defined and dg-/ds > 0 when s/> s5, that is, the function g-(s) is defined when s ~ [s5, +oo) and 
increases over the whole of this interval up to +oo. 

We now make two remarks concerning the mutual arrangement of the pair of curves (one each from the two 
families investigated) for the same value of the parameter 1"1. First, we find the point of intersection of the curves 
t+(s) and t-(s) which requires solutions of the equation 

1-(/l~-rl Is2 - l l s )  ~ = (/l~2+rl/s2 + l / s )  ~ (4.11) 

We square both sides of Eq. (4.11), reduce similar terms and then again square both sides of the equation and 
obtain an equation in s 

((q / s 2 + 1 / s) 2 + 2)(011 s 2 + 11 s) 2 - J/4) 2 = 0 (4.12) 

An analysis of the rods of Eq. (4.12) shows that only sl, s2 and s5 are roots of Eq. (4.11) and, moreover, they are 
positive for just a single value of ~1. We shall denote coincident values t + = t -  at the above-mentioned points by 
t ± . 

Secondly, we establish that t-+(s5) > t-+(sl) when and only when --4(3)/4 < r 1 ~< 0. 
As a result, it turns out to be convenient to pick out the four ranges of values of the parameter rl which correspond 

to different mutual arrangemen+ts " of the curves g+.(s) and t-(s) which also determine the required control for all 
t and 11 with the exception off-(s1),  t-(s2) and g-(s5). 

When rl >t 0 for any t < t-(s1), the minimum permissible abscissa s is reached on the curve g+(s). When g > 
t-+(Sl), the same result holds for t-(s). 

When --4(3)/4 < 11 < 0, the closed isolated curve forss ~ s ~< s2 is added to the curves ~÷(s) and the t-(s), which 
have the same characteristic singularities, where the curve g-(s) lies above the curve t"(s)  and g-+(ss) < t±(s2). 
Moreover, g±(Sl) < t-*(s5), that is, t±(sl) lies below the lowest point of the closed isolated curve. Consequently, 
the required control is defined in the same way as in the preceding case. 

When -1/2 ~< 11 ~< --4(3)/4, the ineq, uality g(Sl) > t(ss+) is satisfied and, for any t < t±(ss), the minimum permissible 
abscissa s is attained on the curve t (s). When t > g-(s5), the same assertion holds for g-(s). 

The close isolated curve disappears when q < -1/2 and the required control is specified as in the preceding 
case. 

We now determine the control on the curves t±(sl(rl)), t-+(s2(rl)) and t±(ss('q)) in the t, 1"1 plane. We recall 
that the dependences of sl, s2 and ss on q have been presented above. By (4.9), we have ~ = 0 and ~ = -1 on the 
curve t-+(Sl(rl)), that is, the time interval in which it is necessary to take u = 1 is equal to zero. Consequently, it 
is necessary to take u = -1 on the curve t±(sl(rl)) and it is a switching curve when rl > -4(3)/4. Similarly, on the 
curve g±(s2(rl)), one must use u = -1 when -1/2 ~< 1"1 < 0 but this curve will not be a switching curve. It is easy to 
show, using the same method, that we have u = 1 when ~1 < 0 on the curve ~±(s501)). This curve serves as a switching 
c u r v e .  

We now completely  present  the feedback optimal control.  To be specific, we shall take ~ > 0 and 
= 1. The  switching curve in the ~r I plane is defined by the equalities 

= f ( n )  = ~ / o ( n '  
1, 1/3), 

-1, 

rl~< rl* 

rl > r l*; rl* = - . , ~  / 4 
(4.13) 

where the notat ion o f  (4.8) is used. The  switching curve is cont inuous and has a kink at the point  K 
with the coordinates  ~* = 1/12, 11" = -4(3)/4.  This curve is represented by the solid line in Figs 2 and 
3. On  account  o f  the fact that  the scale in Fig. 3 is smaller than that  in Fig. 2, the points  K and R shown 
in Fig. 2 are practically indistinguishable in Fig. 3 and are therefore  not  labelled. On  the o ther  hand, 
the scale used in Fig. 3 enables us to depict all the characteristic phase trajectories, the impor tan t  par t  
of  which is missing in Fig. 2. The rest o f  the notat ion employed in Figs 2 and 3 is identical. To be specific, 
we shall hencefor th  mainly refer  to Fig. 2. The  branches of  the switching curve cor responding  to rl < 
11" and r I > rl* are deno ted  by the letters M and N respectively. In the ~11 plane, we have 
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Fig. 2. Fig. 3. 

u = 1 when ~ < fOl) 

u = 1 when ~ = O(rl, 1, 1/3), ~ ~< 0 (4.14) 

u = -1 at the remaining points of the ~lq plane 

Hence u = 1 to the left of and below the switching curve (4.13), on its segment KM to the right of and 
below point K and also on the arc of the curve ~ = ~(~,  1, 1/3) which joins the origin of the system of 
coordinates and the point K (see Fig. 2), where this arc is a part of the switching curve. In the remaining 
part of the ~ plane, we have u = -1. 

When z < 0, ~ = -1, the switching curve remains the same and one simply has to interchange the 
positions of the set of points ~ where u = 1 and u -- -1 in relations (4.14). So, the synthesis of the 
optimal control u(x,y, z) is completely determined by relations (4.2), (4.4), (4.5), (4.8), (4.13) and (4.14) 
for all x, y, z. 

We now describe t]ae set of optimal trajectories which, in the variables ~ and ~, consist of arcs of the 
curves (4.8). Suppose that the initial point x, y, z is specified and, to be specific, we shall assume that z 
> 0. According to formulae (3.4), we find that ~, ~ and ~ = 1. 

If a point ~rl lies c,n the curve ~ = (I)(11, 1, 1/3), where 11 ~ 0, then motion occurs along this curve 
MKO with a control u = 1 until it reaches the origin of the system of coordinates. 

All the remaining optimal trajectories also arrive at the origin of the system of coordinates along 
this curve. An excepti,on is the segment R0 of the curve ~ = (I)(11, -1, 1/3) when ~ ~ [-1/2, 0]: this segment 
is a phase trajectory for u = -1 which begins at the point R with the coordinates (1/6, -1/2) and reaches 
the origin of the system of coordinates. Phase trajectories are denote by thin lines in Figs 2 and 3 and 
arrows indicate the direction of the motion. 

If the initial point flies on the curvilinear arc 

rl~<0, (I)(11, 1, ~ ) < ~ < ~ ( r l , - 1 ,  ~ )  (4.15) 

then the optimal trajectory consists of the segment with u = -1 until it reaches the curve ~ = ~(~,  1, 
1/3) and of the subsequent motion along this curve with u = 1. 

If the initial point lies in the domain ~ < f(rl), the motion initially occurs with u = 1 until it intersects 
the curve ~ = ~(rl, -1, -1/3) which is the part KN of the switching curve (4.13) (see Fig. 2) and then 
with u = -1 along this curve which departs to infinity. By (3.4), we have z = 0 at an infinitely distant 
point of the ~rl plane. At infinity, z changes sign and, then, z < 0, ~ = -1. The phase trajectory continues, 
arriving, when u = -1, from infinity along the curve ~ = (1)(11, 1, 1/3) and arrives along this curve at the 
origin of the system of coordinates. Note that motion through an infinitely distant point occurs without 
a change in the control and takes a finite time. 

It remains to consider initial points in the domain ~ > f01) but outside of the curvilinear comer (4.15). 
Here, we initially have u = -1 and the trajectory ~ = (I)(11, -1, A) departs to infinity, where A > -1/3. 
When ~ = -1 and u =-" -1, motion subsequently occurs along the curves ~ = (1)(11, 1, -A) with a change 
in the sign ofA. These curves lie in the domain ~ < f(~) and persist in the branch KN of the switching 
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curve ~ = 0 ( ~ ,  -1 ,  -1/3) .  A trajectory with u = 1 depar t s  to infinity along this curve, where  the sign of  
z changes again. Later ,  when  ~ = 1, mot ion  occurs, when u = 1, along the curve ~ = @(11, 1, 1/3) until 
it reaches  the origin of  the system of  coordinates.  

Note  that  cer ta in  phase  trajectories  contain  segments  of  the lines ~ = ___r I - 1/3 and  r I = ±(200  -1, 
which cor respond  to the values  A = 0 and A = oo in (4.8) respectively. On depar t ing  to infinity along 
these lines the var iable  x (in the case of  the straight line with A = 0) or  the var iable  y (in the case of  
the straight line with A = oo) s imul taneously  vanishes toge ther  with z, as is easily shown using (3.4). In 
o ther  respects  these lines are t rea ted  in the same  m a n n e r  as the remain ing  t ra jector ies  (4.8). 

H e n c e  for  any initial po in tx ,  y, z, the mot ion  is comple te ly  descr ibed by the t rajectories  of  Figs 2 and 
3 and contains  not  m o r e  than two segments  where  the control  is constant .  In this case, the sign of  z 
cannot  change  m o r e  than  twice. 

We now present the results of an investigation of the normalized optimal time s as a function of ~ and "q. 
The dependence o f s  on ~ for different fixed values of "q is studied where sl, s2, s5 are again considered to be the 
functions of TI whmch were introduced above. When rl ~ 0, the function s(~, "q) decreases as ~ increases if ~ < ~-(sl) 
and has a discontinuity if ~ = ~±(sl). It increases on passing from ~ < ~±(Sl) to ~ > ~±(Sl) and when ~ increases 
from ~ = ~-+(sl) to +oo. 

-0,1 4 

-0,2 .~  

Fig. 4. 

3 
3 

2 

Fig. 5. 



Time-op t ima l  control  in a th i rd-order  system 707 

When -~/(3)/4 < 11 < 0, the function s(~, q) decreases as g increases if g < ~--'($1) and has a discontinuity if ~ = 
4 -  • . ÷ 4 -  . . . .  + 

~-(Sl). It increases on passing from ~ < ~-(Sl) to ~ > ~-(s0.  There Is a further discontinuity when ~ = ~-(s5). The 
function s(~, q) decreases on passing from ~ < ~-(ss) to ~ > ~-(ss) but increases when ~-(ss) ~ ~ ~ ~-(s2). There 
. . . .  4 -  . . . < ± > Is a further dlscontlnmty when ~ = ~-(s2). The function s(~, q) also increases on passing from ~ ~ (s2) to 
~±(s2) and when ~ increases from ~ = ~±(s2) to +~,. 

When -1/2 <~ rl ~< -'~/(3)/4, the function s(~, 11) decreases as ~ increases if ~ < ~±(Ss) and has a discontinuity if 
÷ . ÷ ÷ . . ÷ ~ ~ 4 -  

= ~-(s5). It decreases on passing from ~ < ~-(Ss) to ~ > ~-(ss) but it mcreases when ~-(ss) ~ ~ ~ ~-(s2). The 
next discontinuity occurs when ~ ~ ~±(s2). The function s(~, rl) increases on passing from ~ < ~±(s2) to ~ > ~±(s2) 
and when ~ increases t~rom ~ = ~-(s2) to +.o. 

When ~ < -1/2, the function s(~, q) decreases as ~ increases when ~ < ~±(ss) and has a discontinuity if ~ = 
~±(ss). It decreases on passing from ~ < ~±(ss) to ~ > ~±(s5) and increases as ~ increases from ~ = ~±(s5) to +,,o. 

In Fig. 4, the thin lines are level lines of the function s(~, rl) and the bold lines are the lines of discontinuity of 
this function. The rest of the notation is the same as in Fig. 3. A three-dimensional graph of the function s(~, rl) 
is shown in Fig. 5 where the darker the background, the smaller the corresponding value. 
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